Derive the equation of the straight line in the form of y = mx + c and then sketch the graph. The gradient and the coordinates of a point is given:
1) | m = 5 ; (-4 , 0) | 2) | m = -4 ; (3 , 4) |
3) | m = 3 ; (4 , -1) | 4) | m = 1 ; (2 , 8) |
5) | m = 5 ; (2 , 4) | 6) | m = -5 ; (-1 , -6) |
7) | m = -2 ; (-4 , 7) | 8) | m = 3 ; (1 , -6) |
9) | m = -5 ; (-3 , 7) | 10) | m = -2 ; (2 , 4) |
11) | m = -1 ; (1 , -1) | 12) | m = -5 ; (2 , 7) |
13) | m = 1 ; (-2 , -6) | 14) | m = 4 ; (5 , -6) |
15) | m = 5 ; (3 , 2) | 16) | m = 5 ; (1 , 4) |
17) | m = -2 ; (-5 , -2) | 18) | m = -3 ; (-3 , -4) |
19) | m = 2 ; (-4 , 2) | 20) | m = -2 ; (-1 , -1) |
Derive the equation of the straight line in the form of y = mx + c, from the coordinates of the two points:
1) | (5 , 4) , (-6 , 7) | 2) | (2 , 5) , (-5 , 4) |
3) | (1 , 4) , (-7 , 1) | 4) | (-6 , 8) , (-5 , 6) |
5) | (1 , 7) , (-6 , 6) | 6) | (1 , 4) , (-5 , 9) |
7) | (-5 , 7) , (-7 , 7) | 8) | (-2 , 5) , (-5 , 6) |
9) | (-6 , 6) , (-5 , -2) | 10) | (6 , 7) , (-5 , 6) |
11) | (-6 , 8) , (-6 , 10) | 12) | (-5 , 7) , (-7 , 2) |
13) | (-5 , 5) , (-6 , 5) | 14) | (0 , 7) , (-5 , 7) |
15) | (1 , 5) , (-6 , 8) | 16) | (-2 , 8) , (-7 , 8) |
17) | (4 , 4) , (-5 , 0) | 18) | (-4 , 7) , (-7 , 6) |
19) | (2 , 7) , (-5 , 4) | 20) | (-2 , 7) , (-7 , 6) |
The equation of a straight line is y = 4x -5. Find the equations of both a parallel line and a perpendicular line that go through the following points:
1) | (3 , 6) | 2) | (5 , 5) |
3) | (-7 , 6) | 4) | (4 , -1) |
Joke:
After attending the Sunday School, Little Adam refuses to work out 23 - 14, saying he does not want to live in debt!